3.1.37 \(\int \sec ^5(c+d x) (a+a \sin (c+d x))^3 \, dx\) [37]

Optimal. Leaf size=23 \[ \frac {a^5}{2 d (a-a \sin (c+d x))^2} \]

[Out]

1/2*a^5/d/(a-a*sin(d*x+c))^2

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2746, 32} \begin {gather*} \frac {a^5}{2 d (a-a \sin (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^3,x]

[Out]

a^5/(2*d*(a - a*Sin[c + d*x])^2)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rubi steps

\begin {align*} \int \sec ^5(c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac {a^5 \text {Subst}\left (\int \frac {1}{(a-x)^3} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a^5}{2 d (a-a \sin (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 35, normalized size = 1.52 \begin {gather*} \frac {a^3}{2 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5*(a + a*Sin[c + d*x])^3,x]

[Out]

a^3/(2*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(153\) vs. \(2(21)=42\).
time = 0.20, size = 154, normalized size = 6.70

method result size
risch \(-\frac {2 a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{\left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}\) \(32\)
derivativedivides \(\frac {\frac {a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+3 a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 a^{3}}{4 \cos \left (d x +c \right )^{4}}+a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(154\)
default \(\frac {\frac {a^{3} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}+3 a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {3 a^{3}}{4 \cos \left (d x +c \right )^{4}}+a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(154\)
norman \(\frac {\frac {6 a^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {6 a^{3} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {22 a^{3} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {22 a^{3} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {12 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {30 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {40 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {30 a^{3} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {12 a^{3} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {36 a^{3} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {36 a^{3} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}\) \(278\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/4*a^3*sin(d*x+c)^4/cos(d*x+c)^4+3*a^3*(1/4*sin(d*x+c)^3/cos(d*x+c)^4+1/8*sin(d*x+c)^3/cos(d*x+c)^2+1/8*
sin(d*x+c)-1/8*ln(sec(d*x+c)+tan(d*x+c)))+3/4*a^3/cos(d*x+c)^4+a^3*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*
x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c))))

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 28, normalized size = 1.22 \begin {gather*} \frac {a^{3}}{2 \, {\left (\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*a^3/((sin(d*x + c)^2 - 2*sin(d*x + c) + 1)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 30, normalized size = 1.30 \begin {gather*} -\frac {a^{3}}{2 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/2*a^3/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (22) = 44\).
time = 4.61, size = 63, normalized size = 2.74 \begin {gather*} \frac {2 \, {\left (a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{d {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

2*(a^3*tan(1/2*d*x + 1/2*c)^3 - a^3*tan(1/2*d*x + 1/2*c)^2 + a^3*tan(1/2*d*x + 1/2*c))/(d*(tan(1/2*d*x + 1/2*c
) - 1)^4)

________________________________________________________________________________________

Mupad [B]
time = 0.07, size = 18, normalized size = 0.78 \begin {gather*} \frac {a^3}{2\,d\,{\left (\sin \left (c+d\,x\right )-1\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^3/cos(c + d*x)^5,x)

[Out]

a^3/(2*d*(sin(c + d*x) - 1)^2)

________________________________________________________________________________________